The so-called extreme trans-Neptunian objects (ETNOs) are orbiting the Sun at heliocentric distances larger than 150 AUs, and their discovery a decade ago was soon recognized as a turning point in our knowledge of the outer Solar System. The currently tally stands at 21 ETNOs, and only one, Sedna, has been spectroscopically observed. In the last years several studies have suggested that the dynamical properties of the ETNOs could be better explained if one or several planets of several Earth masses are orbiting the Sun at hundreds of AUs. In 2016, Brown and Batygin used the orbits of seven ETNOs to predict the existence of a super-Earth in the sub-Neptunian mass range orbiting the Sun at 700 AUs: this is known as the “Planet Nine” hypothesis. Among these seven ETNOs, the pair 2004 VN112 – 2013 RF98 clearly stands out, the two objects having almost identical orbits with an angular separation between their directions of perihelia and orbital poles extremely small. This suggests a common dynamical origin: in September 2016 we used the OSIRIS camera-spectrograph at the 10.4m GTC telescope to obtain visible spectra of this pair of ETNOs to unravel their physical nature. The obtained spectral slopes for the two objects were almost identical, 12 ± 2 %/1000Å and 15 ± 2 %/1000Å for 2004 VN112 and 2013 RF98, respectively, and consistent with those obtained by other authors for 2000 CR105 (14%) and 2012 VN113 (13%) using photometric data. These values indicate the possible presence of amorphous silicates in the surface of these objects, as is the case of Trojans or Centaurs, but never dominated by complex organics. In contrast, Sedna presents a value of 42%, having a ultra-red surface material, typically organics, very different from the rest of ETNOs. These five objects belong to the group of seven used to present the Planet Nine hypothesis, suggesting that they all may share a common region of origin, with the exception of Sedna, which is thought to come from the inner Oort Cloud. Therefore, the very similar spectral slopes for the pair 2004 VN112 – 2013 RF98 indicated a common physical origin, suggesting the possibility that this pair could have been a binary asteroid that was perturbed in the past after an encounter with a more massive object. To test the viability of this hypothesis we performed thousands of numerical experiments, analyzing the evolution with time of the angular separation between the orbital poles of the two objects. Our results favors a scenario in which 2004 VN112 – 2013 RF98 were once a binary asteroid that became unbound after a relatively recent gravitational encounter (5 – 10 Myr) with a planet with mass in the range 10-20 Earth masses, moving in an eccentric (0.1-0.4) and inclined (20-50 degrees) orbit, with semi-major axis of 300-600 AU.
Advertised on
References
It may interest you
-
CaII Kgrains, i.e., intermittent, short-lived (about 1 minute), periodic (2-4 minutes), pointlike chromospheric brightenings, are considered to be the manifestations of acoustic waves propagating upward from the solar surface and developing into shocks in the chromosphere. After the simulations of Carlsson and Stein, we know that hot shocked gas moving upward interacting with the downflowing chromospheric gas (falling down after having been displaced upward by a previous shock) nicely reproduces the spectral features of the CaII K profiles observed in such grains, i.e., a narrowband emissionAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on