The so-called extreme trans-Neptunian objects (ETNOs) are orbiting the Sun at heliocentric distances larger than 150 AUs, and their discovery a decade ago was soon recognized as a turning point in our knowledge of the outer Solar System. The currently tally stands at 21 ETNOs, and only one, Sedna, has been spectroscopically observed. In the last years several studies have suggested that the dynamical properties of the ETNOs could be better explained if one or several planets of several Earth masses are orbiting the Sun at hundreds of AUs. In 2016, Brown and Batygin used the orbits of seven ETNOs to predict the existence of a super-Earth in the sub-Neptunian mass range orbiting the Sun at 700 AUs: this is known as the “Planet Nine” hypothesis. Among these seven ETNOs, the pair 2004 VN112 – 2013 RF98 clearly stands out, the two objects having almost identical orbits with an angular separation between their directions of perihelia and orbital poles extremely small. This suggests a common dynamical origin: in September 2016 we used the OSIRIS camera-spectrograph at the 10.4m GTC telescope to obtain visible spectra of this pair of ETNOs to unravel their physical nature. The obtained spectral slopes for the two objects were almost identical, 12 ± 2 %/1000Å and 15 ± 2 %/1000Å for 2004 VN112 and 2013 RF98, respectively, and consistent with those obtained by other authors for 2000 CR105 (14%) and 2012 VN113 (13%) using photometric data. These values indicate the possible presence of amorphous silicates in the surface of these objects, as is the case of Trojans or Centaurs, but never dominated by complex organics. In contrast, Sedna presents a value of 42%, having a ultra-red surface material, typically organics, very different from the rest of ETNOs. These five objects belong to the group of seven used to present the Planet Nine hypothesis, suggesting that they all may share a common region of origin, with the exception of Sedna, which is thought to come from the inner Oort Cloud. Therefore, the very similar spectral slopes for the pair 2004 VN112 – 2013 RF98 indicated a common physical origin, suggesting the possibility that this pair could have been a binary asteroid that was perturbed in the past after an encounter with a more massive object. To test the viability of this hypothesis we performed thousands of numerical experiments, analyzing the evolution with time of the angular separation between the orbital poles of the two objects. Our results favors a scenario in which 2004 VN112 – 2013 RF98 were once a binary asteroid that became unbound after a relatively recent gravitational encounter (5 – 10 Myr) with a planet with mass in the range 10-20 Earth masses, moving in an eccentric (0.1-0.4) and inclined (20-50 degrees) orbit, with semi-major axis of 300-600 AU.
Advertised on
References
It may interest you
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
Recent observational studies suggest that feedback from active galactic nuclei (AGNs)—the energetic centres powered by supermassive black holes—may play an important role in the formation and evolution of dwarf galaxies, contrary to the standard thought. We investigated this using two sets of 12 cosmological magnetohydrodynamic simulations of the formation of dwarf galaxies: one set using a version of the AURIGA galaxy formation physics model including AGN feedback and a parallel set with AGN feedback turned off. Our results reveal that AGNs can suppress the star formation (SF) of dwarfAdvertised on
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on