Using the OSIRIS tunable narrow band imager on the 10.4m GTC (La Palma) we have mapped the SAB(rs)cd galaxy NGC 6946 over a 7.3x7.5 square arcminutes field in the emission lines of the [SII]\lambda\lambda, 6717, 6731 doublet, and in H\alpha. From these maps we have produced catalogs of the H\alpha luminosities and effective radii of 557 HII regions across the disk, and derived the [SII] emission line ratios of 370 of these. The H\alpha observations were used to derive the mean luminosity-weighted electron densities for the regions of the sample, while the [SII] line ratios allowed us to derive values of the in situ electron densities in the denser zones from which the major fraction of the radiation in these lines is emitted, for 58 of the regions. This is by far the largest data set of its kind for a single galaxy. A classical two phase model is used to derive the filling factors of the regions. We find that although the mean electron density decreases with the square root of the radius of the regions, the in situ density is essentially independent of this radius. Thus the filling factor falls systematically, as the radius and the luminosity of the regions increases, with a power law of exponent -2.23 between filling factor and radius. These measurements should enhance the perspectives for more refined physical models of HII regions.
Advertised on
It may interest you
-
Asteroids are the remnants of the planetary formation in the Solar System and so, their study helps us to understand the conditions during the early stages of the formation of our planetary system. Among asteroids, those classified as primitives present similar spectra to that of carbonaceous chondrites, i.e., they are rich in carbon and organic compounds and silicates altered by the presence of liquid water (phyllosilicates). Primitive asteroids are well characterized in various wavelength regions, showing their most diagnostic feature at 3μm. However, there is a lack of information in theAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on