The linear polarization produced by scattering processes in the spectral lines of the IR triplet of Ca II can be observed near the edge of the solar disk. The cause of this polarization was considered a true enigma until the year 2003, in which IAC researchers could carry out sophisticated calculations based on the quantum theory of the spectral line polarization. In this way, they could demonstrate that the physical origin of the enigmatic polarization is the presence of "atomic polarization" in the lower levels of such spectral lines, which produces dichroism (i.e., selective absorption of the polarization components of the radiation beam that propagates towards the observer) without the need of a magnetic field. This result is important because it provides a way to detect extremely weak magnetic fields in Astrophysics, both in the solar atmosphere and in other astrophysical plasmas (e.g., in the atmospheres of supernovae).
Advertised on
References
It may interest you
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
The properties of blue supergiants are key for constraining the end of the main sequence phase, a phase during which massive stars spend most of their lifetimes. The lack of fast-rotating stars below 21.000K, a temperature around which stellar winds change in behaviour, has been proposed to be caused by enhanced mass-loss rates, which would spin down the star. Alternatively, the lack of fast-rotating stars may be the result of stars reaching the end of the main sequence. Here, we combine newly derived estimates of photospheric and wind parameters, wind terminal velocities from the literatureAdvertised on