The total baryon content in the Universe is a well-defined quantity, in addition to being one of the most important cosmological parameters. A variety of observations (CMB, Ly-alpha forest, Big Bang nucleosynthesis) indicate that all baryons amount to around 4% of the total matter-energy content of the Universe. However, in the local Universe the contribution of all the observed components represents around 2% of the total. Therefore, half of the baryons in the local Universe remain elusive. In this article we have presented measurements of the kinematic Sunyaev-Zel’dovich effect in Planck data towards BOSS galaxies, that are compatible with the detection of all baryons in and around these galaxies (including the missing baryons), which represents around half of the total baryons in the Universe out to z=0.12, the maximum redshift sampled by these galaxies.
Advertised on
References
It may interest you
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on