We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4m Gran Telescopio Canarias ( GTC) from 2016 late April to early June. Activated asteroids are objects in orbits typical of asteroids with unlike origin in the cometary reservoirs (the Oort Cloud or the trans-neptunian belt), that ejected dust by any mechanism: sublimation of volatiles (like comets do); collision with another asteroid or rotational disruption. The images of P/2016 G1 show a dust cometary-like coma and were analysed by comparing them with simulated images obtained using a computed Monte Carlo dust model that allow to create images of a dust coma of an object that ejected dust changing the ejection conditions (including the amount of dust particles ejected with time, dust ejection velocity, dust particle sizes, etc). This allow us to obtain information about the amount of dust ejected and the ejection mechanism. P/2016 G1 images are best interpreted as the result of a relatively short-duration event with an onset of about -350+30-10 days before perihelion (i.e., around 2016 February 10), starting sharply and decreasing with -24+10-7 days. The results of the modelling imply (assuming that the observed coma is composed of particles of 1 μm to 1 cm in radius with an albedo of 0.15) an emission of 1.7x107 kg of dust during this period, and the dust size distribution follows a power law of index -3. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From the limiting magnitude reachable with the instrumental setup, and assuming a geometric albedo of 0.15 for the parent body, an upper limit for the size of possible fragment debris of ∼50 m in radius is derived so we concluded that the object suffered a complete disruption likely because of a collision with another asteroid or because it increased its rotation period up to it rotational disruption limit.
Advertised on
References
It may interest you
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on