Superclusters are the largest over-dense, relatively isolated systems in the cosmic web. They provide us invaluable information about the large-scale structure formation at different cosmic epochs, as well as they are excellent places for understanding galaxy evolution in detail. Thanks to the new SDSS-III data, we can extend our knowledge of superclusters to the redshift range above z=0.4. We used data from the twelfth data release of the Sloan Digital Sky Survey (SDSS). Using a sample of more than 500,000 galaxies up to z~0.8, we reconstructed the large-scale luminosity-density field and we used it to detect large-scale over-dense regions. The largest structure in this field, that we called the BOSS Great Wall (BGW), is located at z~0.47 and consisted of two walls with diameters ~180 h-1 Mpc each. The BGW is the larger in volume and diameter structure than any previously known superclusters. Other known superclusters, like the Sloan Great Wall or Laniakea are almost half the size of the BGW. In addition, the BGW contains 830 galaxies and the total mass of our system is at least two times higher than any other superclusters. These characteristics make the BOSS Great Wall the richest, and largest system found in the Universe, and one of the most massive structures ever known.
Advertised on
References
It may interest you
-
The existence of dark matter is probably one of the fundamental mysteries of modern science and unraveling its nature has become one of the primary goals of modern Physics. Despite representing 85% of all matter in the Universe, we do not know what it is. In its simplest description, it is made up of particles that interact with each other and with ordinary matter only through gravity. However, this description does not correspond to any physical model. Finding out what dark matter is requires finding evidence of some kind of interaction of dark matter that goes beyond gravity. In our workAdvertised on
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on