It may interest you
-
Recent observational studies suggest that feedback from active galactic nuclei (AGNs)—the energetic centres powered by supermassive black holes—may play an important role in the formation and evolution of dwarf galaxies, contrary to the standard thought. We investigated this using two sets of 12 cosmological magnetohydrodynamic simulations of the formation of dwarf galaxies: one set using a version of the AURIGA galaxy formation physics model including AGN feedback and a parallel set with AGN feedback turned off. Our results reveal that AGNs can suppress the star formation (SF) of dwarfAdvertised on
-
Thanks to images obtained by the James Webb Telescope (JWST), an international scientific team in which the Instituto de Astrofísica de Canarias (IAC) participates has been able to verify that galaxies in the early universe are usually flat and elongated, and not round or spiral like the nearest galaxies. International research has found, by analysing high-resolution, infrared images of the JWST, that flattened oval disc and tube-shaped galaxies were much more common when the universe was between 600 million and 6 billion years old. In contrast, the nearest galaxies have clearly definedAdvertised on
-
From 14 to 16 February, the second scientific meeting of the Laboratory for Innovation in Opto-Mechanics (LIOM) will be held at the IACTEC building managed by the Instituto de Astrofísica de Canarias (IAC) in the Science and Technology Park of La Laguna (Tenerife). This project is dedicated to the development of new optical and mechanical technologies that will form part of the next generation of telescopes capable of detecting biomarkers on exoplanets. One year after its creation, the IAC's Laboratory for Innovation in Opto-Mechanics (LIOM), is holding its second international meetingAdvertised on